Algebraic and Discretization Error Estimation by Equilibrated Fluxes for Discontinuous Galerkin Methods on Nonmatching Grids
نویسندگان
چکیده
We derive a posteriori error estimates for the discontinuous Galerkin method applied to the Poisson equation. We allow for a variable polynomial degree and simplicial meshes with hanging nodes and propose an approach allowing for simple (nonconforming) flux reconstructions in such a setting. We take into account the algebraic error stemming from the inexact solution of the associated linear systems and propose local stopping criteria for iterative algebraic solvers. An algebraic error flux reconstruction is introduced in this respect. Guaranteed reliability and local efficiency are proven. We next propose an adaptive strategy combining both adaptive mesh refinement and adaptive stopping criteria. At last, we detail a form of the estimates where that factual construction of the reconstructions is not required, which simplifies greatly their evaluation. Numerical experiments illustrate a tight control of the overall error, good prediction of the distribution of both the discretization and algebraic error components, and efficiency of the adaptive strategy.
منابع مشابه
hp-Adaptation Driven by Polynomial-Degree-Robust A Posteriori Error Estimates for Elliptic Problems
We devise and study experimentally adaptive strategies driven by a posteriori error estimates to select automatically both the space mesh and the polynomial degree in the numerical approximation of diffusion equations in two space dimensions. The adaptation is based on equilibrated flux estimates. These estimates are presented here for inhomogeneous Dirichlet and Neumann boundary conditions, fo...
متن کاملA BGK-based Discontinuous Galerkin Method for the Navier-Stokes Equations on Arbitrary Grids
A discontinuous Galerkin Method based on a Bhatnagar-Gross-Krook (BGK) formulation is presented for the solution of the compressible Navier-Stokes equations on arbitrary grids. The idea behind this approach is to combine the robustness of the BGK scheme with the accuracy of the DG methods in an effort to develop a more accurate, efficient, and robust method for numerical simulations of viscous ...
متن کاملNumerical Analysis and Scientific Computing Preprint Seria An Equilibrated A Posteriori Error Estimator for the Interior Penalty Discontinuous Galerkin Method
Interior Penalty Discontinuous Galerkin (IPDG) methods for second order elliptic boundary value problems have been derived from a mixed hybrid formulation of the problem. Numerical flux functions across interelement boundaries play an important role in that theory. Residual type a posteriori error estimators for IPDG methods have been derived and analyzed by many authors including a convergence...
متن کاملCell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics
We present cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and also for the one-dimensional Lagrangian hydrodynamics up to third-order. We also demonstrate that a proper choice of the numerical fluxes allows to enforce stability properties of our discretizations.
متن کاملA Discontinuous Galerkin Method Based on a BGK Scheme for the Navier-Stokes Equations on Arbitrary Grids
A discontinuous Galerkin Method based on a Bhatnagar-Gross-Krook (BGK) formulation is presented for the solution of the compressible Navier-Stokes equations on arbitrary grids. The idea behind this approach is to combine the robustness of the BGK scheme with the accuracy of the DG methods in an effort to develop a more accurate, efficient, and robust method for numerical simulations of viscous ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 64 شماره
صفحات -
تاریخ انتشار 2015